Mating type–dependent constraints on the mobility of the left arm of yeast chromosome III
نویسندگان
چکیده
Mating-type gene (MAT) switching in budding yeast exhibits donor preference. MATa preferentially recombines with HML near the left telomere of chromosome III, whereas MATalpha prefers HMR near the right telomere. Donor preference is controlled by the recombination enhancer (RE) located proximal to HML. To test if HML is constrained in pairing with MATalpha, we examined live-cell mobility of LacI-GFP-bound lactose operator (lacO) arrays inserted at different chromosomal sites. Without induction of recombination, lacO sequences adjacent to HML are strongly constrained in both MATalpha and RE-deleted MATa strains, compared with MATa. In contrast, chromosome movement at HMR or near a telomere of chromosome V is mating-type independent. HML is more constrained in MATa Deltare and less constrained in MATa RE+ compared with other sites. Although HML and MATa are not prealigned before inducing recombination, the three-dimensional configuration of MAT, HML, and HMR is mating-type dependent. These data suggest there is constitutive tethering of HML, which is relieved in MATa cells through the action of RE.
منابع مشابه
The Conformation of Yeast Chromosome III Is Mating Type Dependent and Controlled by the Recombination Enhancer.
Mating-type switching in yeast occurs through gene conversion between the MAT locus and one of two silent loci (HML or HMR) on opposite ends of the chromosome. MATa cells choose HML as template, whereas MATα cells use HMR. The recombination enhancer (RE) located on the left arm regulates this process. One long-standing hypothesis is that switching is guided by mating-type-specific and possibly ...
متن کاملSaccharomyces cerevisiae donor preference during mating-type switching is dependent on chromosome architecture and organization.
Saccharomyces mating-type (MAT) switching occurs by gene conversion using one of two donors, HMLalpha and HMRa, located near the ends of the same chromosome. MATa cells preferentially choose HMLalpha, a decision that depends on the recombination enhancer (RE) that controls recombination along the left arm of chromosome III (III-L). When RE is inactive, the two chromosome arms constitute separat...
متن کاملA 700 bp cis-Acting Region Controls Mating-Type Dependent Recombination Along the Entire Left Arm of Yeast Chromosome III
Homothallic switching of the mating-type MATa gene in Saccharomyces cerevisiae results from replacement by gene conversion of MAT-Ya DNA with Y(alpha) sequences copied from one of two unexpressed donors. MATa preferentially recombines with HML(alpha), located near the left end of chromosome III, but can use HMR(alpha), near the right chromosome end. MATa donor preference depends on a 700 bp ori...
متن کاملGenetic recombination: Sex-change operations in yeast
The 'directionality' of mating-type switching in building yeast is determined by mechanisms that regulate genetic recombination along the whole left arm of chromosome III. In MATa cells, a cis-acting 'recombinational enhancer' activates this entire region, while in MATalpha cells the enhancer is turned off by the alpha2 repressor.
متن کاملGenetics of yeast glucokinase.
Mutants of Saccharomyces cerevisiae lacking glucokinase (EC 2.7.1.2) have no discernible phenotypic difference from the wild-type strain; in a hexokinaseless background, however, they are unable to grow on any sugar except galactose. Reversion studies with glucokinase mutants indicate that the yeast S. cerevisiae has no other enzyme for phosphorylating glucose except the two hexokinases, P1 and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 164 شماره
صفحات -
تاریخ انتشار 2004